On Hopf-Galois extensions of linear categories
نویسنده
چکیده
We continue the investigation of H-Galois extensions of linear categories, where H is a Hopf algebra. In our main result, the Theorem 2.2, we characterize this class of extensions in the case when H is finite dimensional. As an application, we prove a version of the Duality Theorem for crossed products with invertible cocycle. Introduction The duality theorems for actions and coactions originated in the work of Nagakami and Tagasaki on operator algebras, see [12]. A first purely algebraic version of the duality theorem was proved for actions of finite groups in [5]. Blattner and Montgomer showed that a similar result can be obtained for the actions and the coactions of a finite dimensional Hopf algebra, see [2]. A variant of the duality theorem for k-linear graded categories was considered in [3] in order to investigate the Galois coverings of a linear category. In this paper we continue our work on Hopf-Galois extensions of linear categories, started in [14]. Our main aim now is to prove a duality theorem for the crossed product of linear category with a finite dimensional Hopf algebra. Almost all of the contents of the article are the adaptation of the results known for algebras to the case of linear categories. In the first part of the article we fix the terminology and the notation that we use. All the definitions of small linear categories and modules over them in Subsection 1.1, as well as the results on projective modules in Subsection 1.5
منابع مشابه
Homotopic Hopf-Galois extensions of commutative differential graded algebras
This thesis is concerned with the definition and the study of properties of homotopic Hopf-Galois extensions in the category Ch 0 k of chain complexes over a field k, equipped with its projective model structure. Given a differential graded k-Hopf algebra H of finite type, we define a homotopic H-Hopf-Galois extension to be a morphism ' : B ! A of augmented H-comodule dg-k-algebras, where B is ...
متن کاملFinitary Galois Extensions over Noncommutative Bases
We study Galois extensions M (co-)H ⊂ M for H-(co)module algebras M if H is a Frobenius Hopf algebroid. The relation between the action and coaction pictures is analogous to that found in Hopf-Galois theory for finite dimensional Hopf algebras over fields. So we obtain generalizations of various classical theorems of Kreimer-Takeuchi, Doi-Takeuchi and Cohen-FischmanMontgomery. We find that the ...
متن کاملgalois extension for a compact quantum group
The aim of this paper is to introduce the quantum analogues of torsors for a compact quantum group and to investigate their relations with representation theory. Let A be a Hopf algebra over a field k. A theorem of Ulbrich asserts that there is an equivalence of categories between neutral fibre functors on the category of finitedimensional A-comodules and A-Galois extensions of k. We give the c...
متن کاملA History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملHomotopic Hopf–Galois extensions: Foundations and examples
Hopf–Galois extensions of rings generalize Galois extensions, with the coaction of a Hopf algebra replacing the action of a group. Galois extensions with respect to a group G are the Hopf–Galois extensions with respect to the dual of the group algebra of G . Rognes recently defined an analogous notion of Hopf–Galois extensions in the category of structured ring spectra, motivated by the fundame...
متن کامل